第四百三十五章 无法逾越的困难(第3/3页)

这一修正在数学计算和物理推导方面都表现出了一定的价值,看似值得尝试。

但这却意味着一件至关重要的事情:如果暗力辐射的强度真的那么低,那么之前所设计的两套观测方案,暗力辐射望远镜和中微子望远镜,精度都无法达到。

人类必须要开发观测精度更高的观测设备,才有希望真正看到暗力辐射存在的证据。

多条路线共同推进之下,又有一个科研团队提出了一个堪称有些疯狂的观测方案。

当前阶段,制约人类观测精度的主要障碍,是中子星那过于强大的辐射和引力,导致人类根本无法抵近观察。

人类的观测设备根本无法过于靠近中子星。因为一旦过于靠近,就会被中子星摧毁。

既然如此……那能否建造一次性的观测设备?譬如建造一颗观测卫星,直接将其扔到中子星上,借助其撞击到中子星上被毁掉之前的极短时间进行观测?

一颗探测器可进行的观测时长可能仅有几微秒甚至几纳秒。但如果我们能建造成千上万颗这样的探测器,源源不断的扔到中子星之上,观测时长是否就足够多?

韩阳开始仔细思考这一探测方式的可行性。人类科学界之中,众多科学团队也开始探讨这一方案。

这个方案存在的几个障碍之中,中子星的庞大引力可以不必考虑。

因为探测器是自由落体状态的,所以会处于失重状态,不必考虑引力。

潮汐引力也不必考虑。相比起天然星体,探测器可以被视为刚体,自由落体状态下不会被潮汐引力撕裂。

辐射和热量倒是需要仔细斟酌一番。能否制造出抵御中子星辐射和热量,保护观测仪器正常运转的材料,是这一方案能否成行的关键。

其次还需要考虑观测精度的问题。因为这种探测器不可能太大,太大的话,任何缺陷都会被中子星的恶劣环境所放大,最终导致工程上不可行。

但人类同时还必须要确保足够的观测精度。否则就算将其扔到中子星上也没有用处。

如何在有限的体积和质量内,实现足够高的防御能力的同时,实现足够高的观测精度?

这是一个难题。

在韩阳的统一安排之下,人类文明的科研力量再次全面发动起来,对这一难题展开了冲锋。