第810章 无法被观测的电子

之前赖在光学实验室没走,一直参与研究的罗先军回道:“江总,暂时还有些难度。”

“暂时……也就是说未来有机会做到?”

“……这个问题我和李教授讨论过,但我们都不太确定。”罗先军缓缓叙述起来:“首先,氢原子的基态电子绕原子核运动一周的时间,我前阵子特意计算过,约为150阿秒……”

要想测量氢原子电子的时间,得知道电子的运动轨迹和速度才行。

但是,绕核运动的电子又是一个波函数,在量子力学中,科学家们根本没办法准确测量一个波函数的速度,也没办法知道一个量子的运动轨迹。

否则,就不符合量子力学的基本定律。

所以,氢原子电子的绕核速度只能通过计算得来,无法实际测量。

目前公认的速度为玻尔第一速度。

也就是约为光速的1/137。

罗先军继续说:“这个运动的时间太短了,就算我们的激光脉冲的脉宽能做到0.85阿秒,在不考虑其他条件的情况下,也不大可能捕捉到电子的影像。

根据量子力学,电子的位置和速度具有不确定性,它情况基本就是一个波函数,我们无法预知电子的运动机制是连续的,还是闪动的,又或者是其他方式,只能得到一个不确定范围中的估值。

而且,最重要的是,现在的扫描测量手段,根本就无法测量原子核的电子,这是最大的难题。”

抛开量子力学的不确定原理,要想捕捉一个电子绕核运动的影像,最大的难题就是摄像技术不够。

在现实生活中,人们之所以能看到影像和用相机捕捉影像,是因为接收到了电磁波,比如光。

但是,如果一个地方没有光,没有电磁波,那就无法看到这个地方的任何影像了。

而氢原子内,就是这么一个情况。

在一个没有受到激发的氢原子内部,这里没有光,没有电磁波,只有一个处于量子态的电子在绕核做着不规则的,无法预测轨迹的运动。

科学家虽然知道电子的存在,但却无法直接观察它。

纵观科学历史,一直以来人们都只能通过某些手段间接观察电子的影像,而无法直接捕捉到它的影像。

因为,核内电子本身是不发光的。

李开山接过话说:“捕捉核内电子的运动影像,属于世界性的难题,目前整个科学界都没办法,甚至连线索都没有。

我和罗教授尝试了很多种办法,也没能摸索出正确的解决方向,距离真正做到捕捉核内电子的运动影像,还遥遥无期,感觉只有颠覆现有物理大厦的技术才能做到吧。

不过,基态的核内电子不好观测,但是,因为我们的激光脉冲进入了仄秒阶层。

所以我和罗教授根据【超短超强激光技术】的资料导向,开发了一种仄秒光谱技术,已经初步实现了对电子能态改变的观测。”

要想直接观测一种能态下的电子的运动情况,那绝无可能,至少现在人类所掌握的物理规则是不允许的。

“仄秒光谱技术?”江博念叨道。

李开山道:“是的,我们这个想法的基本原理是这样的,不能直接观察一种能态下的电子,那么,总可以间接地研究在这个电子受到外部能量激发,发生跃迁后的能态改变情况吧?

一前一后,总会有变化,只要把握住这种变化的数据情况,就能知道电子在这段时间内的改变情况,同时还能获知电子在跃迁前和跃迁后的基本位置。

具体怎么回事儿,江总您这边来,我们为您动画演示一遍,先军,东西做好了吧?”

“做好了,昨晚刚弄完。”罗先军点头道。

“那就由你向江总讲解吧。”

“好。”

来到一个多媒体会议室,罗先军打开大屏幕,播放幻灯片,为江博讲解起了仄秒光谱技术的要点。

江博当下无事,同时也比较好奇。

另外,根据系统的尿性,他感觉如果将【超短超强激光技术】中所提到的‘电子之谜’给解开之后,应该会有一笔极为丰富的积分奖励。

这种涉及基础物理科学的重大突破,感觉或许十万积分都不止,指不定二十万,甚至更多。

于是,他便坐在一根凳子上认真听了起来。

罗先军指着屏幕讲解道:“仄秒光谱技术,是将激光脉冲技术与电子显微技术结合起来。

在观测电子能态改变的实验中,我们首先通过郑教授和周教授那边的帮助,拿到了一种可以专门捕捉和操控单个原子的超导强磁设备。

我们通过发射一种800nm波长的红色激光脉冲,激发氢原子内的电子,而再用一种266nm波长的蓝色激光脉冲,负责测量电子的运动。